Tips And Tricks to Solve The Mechanics Problems Using Free Body Diagram: Part: II

SHARE:

Free Body Diagram on Pulley An ideal pulley have three characteristics: (i) Mass-less  (ii) Smooth/Friction-less   (iii)Circular. A ...

Free Body Diagram on Pulley
An ideal pulley have three characteristics: (i) Mass-less 
(ii) Smooth/Friction-less  
(iii)Circular.
A pulley has three arm during its motion.
(1) Central arm is known as main arm.
(2) Handing two arm are known as side arm.
The pulleys can be studied under three possible cases. 

Case: I

Main arm is fixed while side arms are free to move. In this case net force acting on ideal pulley will always be zero. Because \(F = ma\), for ideal pulley \(m = 0\) and hence \(F = 0\)
Thus if the tension in the two side string is equal to \(T\), the tension in the main string will be equal to \(2T\).
Say, \({m_2} > {m_1}\)
Since the length of the string is fixed, so if \({m_2}\) comes down by a distance \(x\), \({m_1}\) will go up by \(x\) only. Therefore, acceleration of both the blocks are equal in magnitude and opposite direction.
Note: If \(a\) comes out positive then assumed direction of \(a\) is correct. If \(a\) comes out negative, then actual direction is opposite to the direction assumed.
Free Body Diagram, Mechanics, Newton's Law

Motion of a Connected Block Over a Mass-less and Friction-less Pulley Type: I

Two Body System:
Free Body Diagram, Mechanics, Newton's Law
Two Body System in Pulley Problems
FBD of First Mass
FBD of Second Mass
FBD of Pulley
Let two body \(A\) and \(B\) of mass \({m_1}\) and \({m_2}\) are connected at two ends of a mass-less in-extensible string passing over a friction-less pulley \(P\). Since mass of the pulley is zero then, tension of the string is equal for both side of the pulley. From free body diagram we get,
For mass \({m_1}\):
\({T_1} - {m_1}g = {m_1}a\)
For mass \({m_2}\):
\({m_2}g - {T_1} = {m_2}a\)
For pulley \(P\):
\({T_2} = 2{T_1}\)
From these equation we get,
\({m_2}g - \left( {{m_1}g + {m_1}a} \right) = {m_2}a\)
or, \(\left( {{m_1}a + {m_2}a} \right) = \left( {{m_2}g - {m_1}g} \right)\)
or, \(\left( {{m_2} + {m_1}} \right)a = \left( {{m_2} - {m_1}} \right)g\)
or, \(a = \frac{{\left( {{m_2} - {m_1}} \right)}}{{\left( {{m_2} + {m_1}} \right)}}g\)
And, tension of the string (same for both side of the pulley) \({T_1} = {m_1}a + {m_1}g = \frac{{{m_1}\left( {{m_2} - {m_1}} \right)}}{{\left( {{m_2} + {m_1}} \right)}}g + {m_1}g = \frac{{2{m_1}{m_2}}}{{\left( {{m_1} + {m_2}} \right)}}g\)
And tension or thrust on the pulley is \({T_2} = 2{T_1} = \frac{{4{m_1}{m_2}}}{{\left( {{m_1} + {m_2}} \right)}}g\)



Three Body System:
Let a body of mass \({m_1}\) and other two body B and C of masses \({m_2}\) and \({m_3}\) are connected of a mass-less string passing over a friction-less pulley \(P\). From free body diagram we can write,
Free Body Diagram, Mechanics, Pulley
Free Body Diagram, Mechanics, Pulley
FBD of Mass \({m_1}\)
FBD of Mass \({m_2}\)
Free Body Diagram, Mechanics, Pulley
FBD of Mass \({m_3}\)
For mass \({m_1}\):
\({T_1} - {m_1}g = {m_1}a\)
For mass \({m_2}\):
\({m_2}g + {T_2} - {T_1} = {m_2}a\)
For mass \({m_3}\):
\({m_3}g - {T_2} = {m_3}a\)
For pulley \(P\):
\({T_3} = 2{T_1}\)
From these equation we get, 
\(a = \frac{{\left[ {\left( {{m_2} + {m_3}} \right) - {m_1}} \right]}}{{\left( {{m_1} + {m_2} + {m_3}} \right)}}g\)
And tension of the string \({T_1} = \frac{{2{m_1}\left( {{m_2} + {m_3}} \right)}}{{\left( {{m_1} + {m_2} + {m_3}} \right)}}g\)
And tension of the string \({T_2} = \frac{{2{m_1}{m_3}}}{{\left( {{m_1} + {m_2} + {m_3}} \right)}}g\)
And tension or thrust on the pulley \({T_3} = 2{T_1} = \frac{{4{m_1}\left( {{m_2} + {m_3}} \right)}}{{\left( {{m_1} + {m_2} + {m_3}} \right)}}g\)


When a body A of mass \({m_1}\) rests on a friction-less horizontal surface. Let a string passing over a pulley connect \({m_1}\) with a body B of mass \({m_2}\) as shown below:

Free Body Diagram, Mechanics, Pulley
Free Body Diagram, Mechanics, Pulley
Free Body Diagram, Mechanics, Pulley
Free Body Diagram, Mechanics, Pulley
From free body diagram we get,
For mass \({m_1}\):
\(T = {m_1}a\)
For mass \({m_2}\):
\({m_2}g - T = {m_2}a\)
From these two equation we get,
Acceleration \(a = \frac{{{m_2}}}{{\left( {{m_1} + {m_2}} \right)}}g\)
Tension of the string \(T = \frac{{{m_1}{m_2}}}{{\left( {{m_1} + {m_2}} \right)}}g\) And Tension or thrust on pulley \(P = \sqrt {{T^2} + {T^2}}  = \sqrt 2 T\)




When a body A of mass \({m_1}\) rests on a horizontal surface with co-efficient of friction \(\mu \) between body and the table. Let a string passing over a pulley connect \({m_1}\) with a body B of mass \({m_2}\) as shown in below:

free body diagram, mechanics, pulley
     
  
free body diagram, mechanics, pulley
free body diagram, mechanics, pulley
free body diagram, mechanics, pulley
From free body diagram we get,
For mass \({m_1}\):
\(R = mg\) and \(T - \mu R = {m_1}a\)
or, \(T - \mu {m_1}g = {m_1}a\)
For mass \({m_2}\):
From these two equation,
Acceleration \(a = \frac{{\left( {{m_2} - \mu {m_1}} \right)}}{{\left( {{m_1} + {m_2}} \right)}}g\) And tension of the string \(T = \frac{{{m_1}{m_2}\left( {1 + \mu } \right)}}{{\left( {{m_1} + {m_2}} \right)}}g\)  


Two masses are suspended over a pulley on a friction-less inclined plane as shown below in the figure. The mass \({m_2}\) descends with an acceleration \(a\). The mass \({m_1}\) s on inclined plane:

Free Body Diagram, Mechanics Pulley
Free Body Diagram, Mechanics Pulley
Free Body Diagram, Mechanics Pulley
From free body diagram we get,
For mass \({m_1}\):
\(T - {m_1}g\sin \theta  = {m_1}a\)
For mass \({m_2}\):
\({m_2}g - T = {m_2}a\)
From these equation we get,
Acceleration \(a = \frac{{\left( {{m_2} - {m_1}\sin \theta } \right)}}{{\left( {{m_1} + {m_2}} \right)}}g\) and,
Tension of the string \(T = \frac{{{m_1}{m_2}\left( {1 + \sin \theta } \right)}}{{\left( {{m_1} + {m_2}} \right)}}g\)




Two masses are suspended over a pulley on a inclined plane with coefficient of friction between the surface and the body is \(\mu \)as shown in figure below. The mass \({m_2}\) descends with an acceleration \(a\). The mass \({m_1}\) is on inclined plane:
Free Body Diagram, Mechanics, Pulley

Free Body Diagram, Mechanics, Pulley

Free Body Diagram, Mechanics, Pulley



From free body diagram we get,
For mass \({m_1}\):
\(R = {m_1}g\cos \theta \) and, \(T - \mu R - {m_1}g\sin \theta  = {m_1}a\)
For mass \({m_2}\):
\({m_2}g - T = {m_2}a\)
From these two equation we get,
Acceleration \(a = \frac{{\left[ {{m_1} - {m_1}\left( {\sin \theta  + \mu \cos \theta } \right)} \right]}}{{\left( {{m_1} + {m_2}} \right)}}g\) and,
Tension of the string \(T = \frac{{{m_1}{m_2}\left( {1 + \sin \theta  + \mu \cos \theta } \right)}}{{\left( {{m_1} + {m_2}} \right)}}g\)


Two body A and B of masses \({m_1}\) and \({m_2}\) are connected by a string passing over a friction-less pulley such that \({m_2} > {m_1}\): 

Free Body diagram, Mechanics, Pulley
Free Body diagram, Mechanics, Pulley
Free Body diagram, Mechanics, Pulley
From free body diagram we get, 
For mass \({m_1}\):
\(T - {m_1}g\sin \alpha  = {m_1}a\)
For mass \({m_2}\):
\({m_2}g\sin \beta  - T = {m_2}a\)
From these two equation we get,
Acceleration \(a = \frac{{\left( {{m_2}\sin \beta  - {m_1}\sin \alpha } \right)}}{{\left( {{m_1} + {m_2}} \right)}}g\) and,
Tension of the string \(T = \frac{{{m_1}{m_2}\left( {\sin \alpha  + \sin \beta } \right)}}{{\left( {{m_1} + {m_2}} \right)}}g\)




The mass \(M\) is connected to \({m_1}\) and \({m_2}\) via string passing over alight pulleys. Let \({m_1} > {m_2}\). Obviously \({m_1}\) moves down an acceleration \(a\). The block on the horizontal table moves towards right with acceleration \(a\):

Free Body Diagram, Mechanics, Pulley
Free Body Diagram, Mechanics, Pulley
Free Body Diagram, Mechanics, Pulley
Free Body Diagram, Mechanics, Pulley
From free body Diagram we get,
For mass \({m_1}\):
\({m_1}g - {T_1} = {m_1}a\)
For mass \({m_2}\):
\({T_2} - {m_2}g = {m_2}a\)
For mass \(M\):
\({T_1} - {T_2} = Ma\)
From these equation we get,
Acceleration \(a = \frac{{\left( {{m_1} - {m_2}} \right)}}{{\left( {{m_1} + {m_2} + M} \right)}}g\) and,
Tension of the string \({T_1} = \frac{{{m_1}\left( {2{m_2} + M} \right)}}{{\left( {{m_1} + {m_2} + M} \right)}}g\) and,
Tension of the string \({T_2} = \frac{{{m_2}\left( {2{m_1} + M} \right)}}{{\left( {{m_1} + {m_2} + M} \right)}}g\) 
    


COMMENTS

Name

B. Sc Nursing,1,Blogger,2,Electricity,1,Electrostatics,1,IX,11,Light,3,Mechanics,7,Modern Physics,1,NEET-WBJEE-JENPAUH,11,Simulation-Multimedia,4,VIII,1,Wave & Vibration,1,X,7,
ltr
item
Old Millennium Physics: Tips And Tricks to Solve The Mechanics Problems Using Free Body Diagram: Part: II
Tips And Tricks to Solve The Mechanics Problems Using Free Body Diagram: Part: II
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgtm0bDPDs-zeaArAW35lplGxwkAFNtlPiYyNECpVp3y3m9KdqKlg8XX_26vTN-YVy5K6v4c3nvxel0uQD4j0JHrUzVRlr6fsSAWZjbKAEN2_6XWRinxqXqREzOVNp-UtNccTMrBMUrfQuE/s320/Pulley+Problems.png
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgtm0bDPDs-zeaArAW35lplGxwkAFNtlPiYyNECpVp3y3m9KdqKlg8XX_26vTN-YVy5K6v4c3nvxel0uQD4j0JHrUzVRlr6fsSAWZjbKAEN2_6XWRinxqXqREzOVNp-UtNccTMrBMUrfQuE/s72-c/Pulley+Problems.png
Old Millennium Physics
https://physics-web-blog.blogspot.com/2016/07/tips-and-tricks-to-solve-mechanics.html
https://physics-web-blog.blogspot.com/
http://physics-web-blog.blogspot.com/
http://physics-web-blog.blogspot.com/2016/07/tips-and-tricks-to-solve-mechanics.html
true
3446553479557158339
UTF-8
Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU LABEL ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS CONTENT IS PREMIUM Please share to unlock Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy